

OLEDWorks LLC

Manufacturing OLED Lighting Panels

Michael Boroson 6/14/2012

The need for low cost manufacturing equipment for panels, components and luminaires to enable a U.S. OLED SSL manufacturing industry

OLED Status vs. DOE Roadmap

Current Products (2012)

- Price: \$5,000-20,000/m²
- Price: \$500-2,000/klm
- Manufacturers:
 LG, Panasonic, Blackbody,
 Osram, Lumiotec, & Philips
- Panel Efficacy: 25-60 lm/W
- L70 @3000 nits: 1-15,000 hr

DOE Roadmap for 2012

- Cost: \$270/m²
- Cost: \$45/klm
- Manufacturers:
 At Least 1 US Manufacturer?
- Panel Efficacy: 86 lm/W
- L70 @3000 nits: 11,000 hr
- Grow market by providing sufficient performance at a reasonable cost while enabling unique products.
- Mid to high end of current performance is good enough for initial products, but price is much too high.
- Current manufacturers are using equipment and processes that will not be able to meet current or future cost targets.
- DOE must support novel low cost manufacturing equipment and methods.

LED "Panels" Status

Current Products (2012)

Price: \$400-800/m²

Price: \$40-80/klm

Manufacturers: Many

Panel Efficacy: 45-70 lm/W

L70 @3000 nits: 50,000 hr

- LED price and performance is currently much more competitive with traditional lighting than OLED
- Despite LED's lead, many lighting designers and luminaire manufacturers believe there is a place for OLED in the lighting market
- Long term OLED price and performance must be competitive with LED
- DOE can enable a U.S. OLED SSL manufacturing industry by supporting the low volume early phase of the market

How Do We Get Cost Down?

Component	Requirement	DOE 2012 Targets	Estimated 2012 Actual*
Equipment (Entire Line)	\$100 capital/m²/yr \$25M total cost \$20/m²	\$5,000 capital/m²/yr \$60M total cost \$1000/m²	\$1,000/m ²
OLED Materials	\$10/m ²	\$40/m ²	\$500/m ²
Other Materials	Int. Sub: \$15/m ² Encapsulation: \$10/m ² Other: \$5/m ²	\$60/m ² \$20/m ² \$15/m ²	\$400/m ² \$400/m ² \$400/m ²
Labor	\$5/m ²	\$400/m ²	\$1000/m ²

*Adjusted for DOE roadmap assumptions for yield, substrate utilization and uptime

- Highest priority is low cost/high throughput/highly automated equipment for every step of the manufacturing process (highest cost step is OLED stack deposition).
- Second highest priority is low cost "other materials" which also requires low cost/high throughput/highly automated equipment.

OLED Manufacturing Example Issue

- Current manufacturers are using Gen 2 scale lines
 - □ ~ 2 min TAC Time
 - □ ~ 20% maximum materials utilization
 - □ DOE estimated capacity is ~ 12,000m²/yr
 - \$60M capital investment (\$5,000 capital/m²/yr)
 - □ Depreciation is ~ \$1,000/m²
- Scaling to 1 min TACT on Gen 5 for cost reduction will:
 - Require 8x higher evaporation and deposition rates
 - Require 8x more material in source and at temperature for 7-14 days
 - □ Require 2-4x improvement in materials utilization
 - □ Require 50x reduction in ratio of capital investment to throughput (\$100 capital/m²/yr)
- A novel solution to reducing the ratio of capital investment to throughput while increasing total capacity is needed.

Proposed Priority Tasks

- M.01 Manufacturing equipment for high speed, low cost, uniform deposition of state of the art OLED structures and layers (OLED stack deposition)
 - Enable novel, low cost manufacturing
 - □ Enable profitable market entry for panel makers and luminaire manufacturers
 - Cannot ignore depreciation and labor
 - Must be scalable and profitable from low early volumes to high future volumes
 - Must be different than what Asia and Europe are doing
- M.03 Manufacturing of low cost integrated substrates and encapsulation materials
 - Enable novel, low cost supply of integrated substrates and encapsulation materials
 - Must be different than what suppliers to the display industry are doing

How DOE Can Help?

- Fund novel low cost/high throughput vacuum deposition equipment
 - □ LOWER ENTRY BARRIER: More US companies can participate in panel manufacturing, odds of success increases, longer term need for government support decreases
 - □ SURVIVE VALLEY OF DEATH: Cost competitive and profitable early products will provide internal funding required for further performance improvements
 - □ FASTER MARKET PENETRATION: Faster market growth, faster energy savings and faster performance improvement
- Fund low cost integrated substrates and encapsulation equipment
 - ENABLE EARLY ENTRY: Decreases risk of installing equipment for early low volume market
 - REDUCE PRODUCT COST STRUCTURE: Lighting requires 10x cost reduction vs. displays

Novel approaches are possible!

Novel approaches have been proposed!

Fund these novel approaches appropriately for success!